Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474571

RESUMEN

The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.


Asunto(s)
Alcaloides , Evodia , Plantas Medicinales , Quinolonas , Rutaceae , Humanos , Extractos Vegetales , Alcaloides Indólicos , Células HeLa , Quinazolinas
2.
Sci Rep ; 14(1): 5460, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443572

RESUMEN

Autistic Children often struggle with social interaction and communication, studies have found that many of them prefer to interact with objects than people. However, there is a lack of research exploring the specific characteristics and factors involved in interactions within families with autistic children where objects are the center of the interaction. This paper describes the process and findings of a diary study exploring how young autistic children interact with their families through objects in natural scenarios. A one-week diary study was conducted with six families with young autistic children. Diary videos were recorded onsite and coded later according to a social interaction behavior scheme with corresponding diary entries. Qualitative data analysis was conducted to reveal possible patterns. Results revealed ongoing difficulties in establishing and maintaining family interaction and identified influential factors of object-centered family interaction. The most prevalent pattern observed was parents taking the lead in interactions, followed by the child's confirmation response. Remarkably, daily necessities emerged as potential physical mediums for enhancing family interactions, opening avenues for exploring tangible designs in human-computer interaction. These findings offer valuable implications for future research and the development of innovative designs that promote enriching interactions for autistic children and their families.


Asunto(s)
Trastorno Autístico , Niño , Humanos , Comunicación , Medios de Cultivo , Padres , Examen Físico
3.
Biochimie ; 221: 27-37, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38224902

RESUMEN

The light-induced transthylakoid membrane potential (ΔΨm) can function as a driving force to help catalyzing the formation of ATP molecules, proving a tight connection between ΔΨm and the ATP synthase. Naturally, a question can be raised on the effects of altered functioning of ATP synthases on regulating ΔΨm, which is attractive in the area of photosynthetic research. Lots of findings, when making efforts of solving this difficulty, can offer an in-depth understanding into the mechanism behind. However, the functional network on modulating ΔΨm is highly interdependent. It is difficult to comprehend the consequences of altered activity of ATP synthases on adjusting ΔΨm because parameters that have influences on ΔΨm would themselves be affected by ΔΨm. In this work, a computer model was applied to check the kinetic changes in polarization/depolarization across the thylakoid membrane (TM) regulated by the modified action of ATP synthases. The computing data revealed that under the extreme condition by numerically "switching off" the action of the ATP synthase, the complete inactivation of ATP synthase would markedly impede proton translocation at the cytb6f complex. Concurrently, the KEA3 (CLCe) porter, actively pumping protons into the stroma, further contributes to achieving a sustained low level of ΔΨm. Besides, the quantitative consequences on every particular component of ΔΨm adjusted by the modified functioning of ATP synthases were also explored. By employing the model, we bring evidence from the theoretical perspective that the ATP synthase is a key factor in forming a transmembrane proton loop thereby maintaining a propriate steady-state ΔΨm to meet variable environmental conditions.

4.
Front Neurosci ; 17: 1243409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033550

RESUMEN

Both effortful and effortless training have been shown to be effective in enhancing individuals' executive functions. Effortful training improves domain-specific EFs, while effortless training improves domain-general EFs. Furthermore, effortful training has significantly higher training effects on EFs than effortless training. The neural mechanism underlying these different effects remained unclear. The present study conducted meta-analysis on neuroimaging studies to explore the changes of brain activations induced by effortful and effortless training. The results showed that effortful training induced greater activation in superior frontal gyrus, while effortless training induced greater activation in middle frontal gyrus, precuneus and cuneus. The brain regions of MD system enhanced by effortful training were more associated with core cognitive functions underlying EFs, while those enhanced by effortless training were more correlated with language functions. In addition, the significant clusters induced by effortful training had more overlaps with the MD system than effortless training. These results provided us with possibility to discuss the different behavioral results brought by effortful and effortless training.

5.
Cancer Cell Int ; 23(1): 204, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37716943

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) represents a significant clinical challenge. Chemotherapy remains the mainstay for a large part of TNBC patients, whereas drug resistance and tumor recurrence frequently occur. It is in urgent need to identify novel molecular targets for TNBC and develop effective therapy against the aggressive disease. METHODS: Immunohistochemistry was performed to examine the expression of HER3 in TNBC samples. Western blots were used to assess protein expression and activation. Cell proliferation and viability were determined by cell growth (MTS) assays. TCGA databases were analyzed to correlate HER3 mRNA expression with the clinical outcomes of TNBC patients. Specific shRNA was used to knockdown HER3 expression. IncuCyte system was utilized to monitor cell growth and migration. LIVE/DEAD Cell Imaging was to detect live and dead cells. HER3 recognition by our anti-HER3 monoclonal antibody (mAb) 4A7 was verified by ELISA, flow cytometry, and co-immunoprecipitation assays. Orthotopic tumor models were established in nude mice to determine the capability of TNBC cells forming tumors and to test if our mAb 4A7 could potentiate the antitumor activity of paclitaxel in vivo. RESULTS: Elevated expression of HER3 was observed in approximately half of the TNBC specimens and cell lines tested. Analyses of TCGA databases found that the TNBC patients with high HER3 mRNA expression in the tumors showed significantly worse overall survival (OS) and relapse-free survival (RFS) than those with low HER3 expression. Specific knockdown of HER3 markedly inhibited TNBC cell proliferation and mammosphere formation in vitro and tumor growth in vivo. Our mAb 4A7 abrogated heregulin (a ligand for HER3), but not SDF-1 (a ligand for CXCR4)-induced enhancement of TNBC cell migration. Combinations of 4A7 and the EGFR-tyrosine kinase inhibitor (TKI) gefitinib dramatically decreased the levels of phosphorylated HER3, EGFR, Akt, and ERK1/2 in TNBC cells and potently induced growth inhibition and cell death. Moreover, 4A7 in combination with paclitaxel exerted significant antitumor activity against TNBC in vitro and in vivo. CONCLUSIONS: Our data demonstrate that increased HER3 is an effective therapeutic target for TNBC and our anti-HER3 mAb (4A7) may enhance the efficacy of gefitinib or paclitaxel in TNBC.

6.
NPJ Precis Oncol ; 7(1): 72, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537339

RESUMEN

Patients with triple-negative breast cancer (TNBC) have a poor prognosis and high relapse rate due to limited therapeutic options. This study was conducted to determine the mechanisms of action of panobinostat, a pan-inhibitor of histone deacetylase (HDAC) and FDA-approved medication for multiple myeloma, in TNBC and to provide a rationale for effective drug combinations against this aggressive disease. RNA sequencing analyses of the claudin-low (CL) TNBC (MDA-MB-231) cells untreated or treated with panobinostat were performed to identify the differentially expressed genes. Adaptive alterations in gene expression were analyzed and validated in additional CL TNBC cells. Tumor xenograft models were used to test the in vivo antitumor activity of panobinostat alone or its combinations with gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). Panobinostat potently inhibited proliferation and induced apoptosis in all TNBC cells tested. However, in CL TNBC cells, this HDAC inhibitor markedly enhanced expression of HER3, which interacted with EGFR to activate both receptors and Akt signaling pathways. Combinations of panobinostat and gefitinib synergistically suppressed CL TNBC cell proliferation and promoted apoptosis in vitro and in vivo. Upregulation of HER3 compromises the efficacy of panobinostat in CL TNBC. Inactivation of HER3 combined with panobinostat represents a practical approach to combat CL TNBC.

7.
PeerJ ; 11: e15652, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456883

RESUMEN

Background: Root rot diseases are prevalent in many Coptis chinensis Franch. production areas, perhaps partially due to the overuse of synthetic fertilizers. Synthetic fertilizers can also lead to soil degradation. Trichoderma is widely used in biofertilizers and biopesticides. This study applied a combination of four Trichoderma species (compound Trichoderma agent, CTA) to C. chinensis and evaluated its effects on growth, as well as rhizosphere soil nutrients, enzyme activities, and microbial community structure. The purpose of this study was to estimate the potential of using CTA as a biofertilizer for C. chinensis, and determine if it could, at least partially, replace synthetic fertilizers to control root rot disease and maintain soil fertility. Method: CTA, compound fertilizer and sterile water were applied to C. chinensis plants. After 60 days, the soluble sugar, soluble protein, chlorophyll of leaves, and individual weight of each plant were measured. The rhizosphere soil nutrient content, enzymatic activity, and the microbial community were also determined. The results were analyzed to evaluate the effect of CTA on C. chinensis growth and soil fertility. Results: CTA increased the soluble protein, chlorophyll, and individual weight of C. chinensis plants while compound fertilizer decreased chlorophyll. CTA increased the activities of urease and catalase in rhizosphere soil, whereas the compound fertilizer decreased urease, catalase, and alkaline phosphatase activities. CTA elevated soil pH, while compound fertilizer reduced it. CTA had no significant effects on soil nutrients and organic matter. CTA decreased the fungal number and alpha-diversity of fungi and bacteria, and both the fungal and bacterial communities were significantly different from the other two. CTA increased B/F value, which improved the rhizosphere microbial community. Both CTA and the compound fertilizer significantly altered the soil microbial community. The relative abundance of Ascomycota was higher and Basidiomycota was lower after CTA treatment than after the other two treatments, indicating that the soil treated with CTA was healthier than that of the other two treatments. CTA decreased harmful Ilyonectria mors-panacis and Corynebacterium sp. And increased beneficial Ralstonia picketti. Trichoderma spp. could exist in C. chinensis rhizosphere soil for a long time. The functional prediction results demonstrated that CTA reduced some rhizosphere phytopathogenic fungi. Correlation analysis showed that CTA elevated rhizosphere pH and enzyme activities. In summary, synthetic fertilizers damaged soil fertility, and the overuse of them might be responsible for root rot disease, while CTA could promote C. chinensis growth, improve soil and decrease the incidence and severity of C. chinensis root rot disease. Therefore, as a biofertilizer, CTA can, at least partially, replace synthetic fertilizers in C. chinensis production. Combining it with organic fertilizer will increase the potential of Trichoderma.


Asunto(s)
Microbiota , Trichoderma , Suelo/química , Coptis chinensis , Trichoderma/metabolismo , Fertilizantes/microbiología , Catalasa , Rizosfera , Ureasa , Microbiología del Suelo , Nutrientes , Bacterias/metabolismo , Clorofila/metabolismo
8.
Biol Proced Online ; 25(1): 19, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370010

RESUMEN

BACKGROUND: Resistance to HER2-targeted therapies, including the monoclonal antibody trastuzumab and tyrosine kinase inhibitor lapatinib, frequently occurs and currently represents a significant clinical challenge in the management of HER2-positive breast cancer. We previously showed that the trastuzumab-resistant SKBR3-pool2 and BT474-HR20 sublines were refractory to lapatinib in vitro as compared to the parental SKBR3 and BT474 cells, respectively. The in vivo efficacy of lapatinib against trastuzumab-resistant breast cancer remained unclear. RESULTS: In tumor xenograft models, both SKBR3-pool2- and BT474-HR20-derived tumors retained their resistance phenotype to trastuzumab; however, those tumors responded differently to the treatment with lapatinib. While lapatinib markedly suppressed growth of SKBR3-pool2-derived tumors, it slightly attenuated BT474-HR20 tumor growth. Immunohistochemistry analyses revealed that lapatinib neither affected the expression of HER3, nor altered the levels of phosphorylated HER3 and FOXO3a in vivo. Interestingly, lapatinib treatment significantly increased the levels of phosphorylated Akt and upregulated the expression of insulin receptor substrate-1 (IRS1) in the tumors-derived from BT474-HR20, but not SKBR3-pool2 cells. CONCLUSIONS: Our data indicated that SKBR3-pool2-derived tumors were highly sensitive to lapatinib treatment, whereas BT474-HR20 tumors exhibited resistance to lapatinib. It seemed that the inefficacy of lapatinib against BT474-HR20 tumors in vivo was attributed to lapatinib-induced upregulation of IRS1 and activation of Akt. Thus, the tumor xenograft models-derived from SKBR3-pool2 and BT474-HR20 cells serve as an excellent in vivo system to test the efficacy of other HER2-targeted therapies and novel agents to overcome trastuzumab resistance against HER2-positive breast cancer.

9.
J Nat Prod ; 86(6): 1571-1583, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37256742

RESUMEN

Phenylphenalenones (PPs) are phytoalexins protecting banana plants (Musaceae) against various pathogens. However, how plants synthesize PPs is still poorly understood. In this work, we investigated the major secondary metabolites of developing seed coats of Musella lasiocarpa to determine if this species might be a good model system to study the biosynthesis of PPs. We found that PPs are major components of M. lasiocarpa seed coats at middle and late developmental stages. Two previously undescribed PP dimers (M-4 and M-6) and a group of unreported diarylheptanoid (DH) derivatives named musellins A-F (B-7, B-9, B-10, B-12, B-14, and B-15) were isolated along with 14 known compounds. Musellin D (B-12) and musellin F (B-15) contain the first reported furo[3,2-c]pyran ring and represent a previously undescribed carbon skeleton. The chemical structures of all new compounds were characterized by spectroscopic data, including NMR, HRESIMS, and ECD analysis. Plausible biosynthetic pathways for the formation of PPs and DHs are proposed.


Asunto(s)
Musa , Musaceae , Fenalenos , Diarilheptanoides , Estructura Molecular , Musa/metabolismo , Fenalenos/química , Polímeros , Semillas
10.
Front Pediatr ; 11: 1063558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090924

RESUMEN

Background: Echovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome. Methods: This is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses. Results: In addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8-295.1) and partial PN (OR, 12.9; 95% CI, 2.2-77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1-2.0) and platelet (PLT) < 140 × 109/L at early stage of illness (OR, 17.7; 95% CI, 1.4-221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases. Conclusions: PN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome.

11.
J Hazard Mater ; 453: 131382, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054643

RESUMEN

Exploring coating materials with superior extraction efficiency has always been the pursuit in the field of solid phase microextraction (SPME). Metal coordination clusters with high thermal and chemical stability, abundant functional groups as active adsorption site are the promising coatings. In the study, a Zn5(H2Ln)6(NO3)4 (Zn5, H3Ln =(1,2-bis-(benzo[d]imidazol-2-yl)-ethenol) cluster coating was prepared and applied for SPME of ten phenols. Zn5 based SPME fiber exhibited high extraction efficiencies for phenols in headspace (HS) mode, which circumvented the pollution of SPME fiber. The adsorption isotherm and theoretical calculation indicated the adsorption mechanism of phenols on Zn5 was hydrophobic interaction, H-bond interaction and π-π stacking. Under the optimized extraction conditions, an HS-SPME-GC-MS/MS method was developed for the determination of ten phenols in water and soil samples. For ten phenolic compounds in water and soil samples, the linear ranges were 0.5-5000 ng/L and 0.5-250 ng/g, respectively. The limits of detection (LODs, S/N = 3) were 0.010-1.20 ng/L and 0.0048-0.16 ng/g, respectively. The precisions of single fiber and fiber-to-fiber were lower than 9.0% and 14.1%, respectively. The proposed method was applied for the detection of ten phenolic compounds in various water and soil samples, showing satisfactory recovery (72.1-118.8%). This study delivered a novel and efficient SPME coating material for the extraction of phenols.

12.
Am J Med Sci ; 365(5): 443-449, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796723

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is usually considered an immune inflammatory disease. Interaction between platelets and monocytes is associated with immune inflammation. Cross-talk between platelets and monocytes is reflected by formation monocyte-platelet aggregates (MPAs). This study aims to test MPAs and MPAs with the different monocyte subsets to evaluate their association with disease severity in CKD. METHODS: Forty-four hospitalized patients with CKD and twenty healthy volunteers were enrolled. The proportion of MPAs and MPAs with the different monocyte subsets were tested by flow cytometry. RESULTS: The proportion of circulating MPAs in all patients with CKD were significantly higher than those of healthy controls (p<0.001). A higher proportion of MPAs with classical monocytes (CM) was found in CKD4-5 patients (p=0.007), while another higher proportion of MPAs with non-classical monocytes (NCM) was found CKD2-3 patients (p<0.001). The proportion of MPAs with intermediate monocytes (IM) in CKD 4-5 group was significantly higher in comparison to CKD2-3 group and healthy controls (p<0.001). Circulating MPAs were found to be correlated with serum creatinine (r=0.538, p<0.001) and eGFR (r=-0.864, p<0.001). The AUC for MPAs with IM was 0.942 (95% CI 0.890-0.994, p<0.001). CONCLUSIONS: Study results highlight the interplay between platelets and inflammatory monocytes in CKD. There are alterations in circulating MPAs and MPAs with the different monocyte subsets in CKD patients compared to controls which change with CKD severity. The MPAs may have an important role in the development of CKD or as a predictive marker for monitoring disease severity.


Asunto(s)
Monocitos , Insuficiencia Renal Crónica , Humanos , Plaquetas , Citometría de Flujo/métodos , Gravedad del Paciente
13.
Plant Dis ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633387

RESUMEN

Coptis chinensis belongs to the Ranunculaceae family and is a widely used traditional Chinese herb. Chongqing Municipality produces >60% of China's production. Root rot seriously reduced yield and quality (Mei et al. 2021). In May 2020, root rot of C. chinensis were observed on 3-year-old roots with an average incidence of 45.3% in three commercial fields (about 0.5 acre) in Fengmu Town, Shizhu County (30.24°N; 108.48°E) from Chongqing. Diseased plants were stunted and less vigorous with wilting and twisting leaves. Brown or black discoloration lesion was appeared in the vascular and cortical tissue of roots and rhizomes. Ten fresh symptomatic plants were randomly sampled from the fields. Root tissues were surface sterilized in 75% ethanol for 60s, rinsed thrice with sterile water, placed on potato dextrose agar (PDA), and incubated at 25°C for 7 days. A total of 11 isolates were obtained from the infected tissues. Pure colonies of all fungal isolates had similar characteristics, and five isolates (a2, a4, a9, a11, a12) were randomly selected for further study. Colonies of this fungus were aurantium and felty at first, and then became brownish grey. Macroconidia (n=50) were predominating, hyaline, cylindrical, predominantly straight with both ends broadly rounded, 1~3 septate; one septate, 18.8~25.5×5.9~6.8µm; two septate, 22.6~35.4×6.1~7.2µm; three septate, 26.1~42.5×7.2~8.0 µm. Microconidia (n=50) were hyaline, ellipsoid to ovoid, 0 to 1 septate; aseptate, 7.5~8.8×3.4~4.3µm. Chlamydospores (n=50) were hyaline at first, and becoming brown, globose to subglobose, smooth, 8.3~12.5×8.1~13.5µm, mostly occurring intercalary in chains. The DNA of isolates were extracted and the ITS, HIS, TEF, TUB2 genes were amplified and sequenced using the primers ITS1/ITS4, CYLH3F/CYLH3R, EF1/EF2, T1/CYLTUB1R, respectively (Cabral et al. 2012). The representative isolate a2 were deposited in GenBenk (OK105140, ITS; OM799544, HIS; OK493444, TEF; OK493445, TUB2). BLAST analysis showed the ITS, HIS, TEF, TUB2 sequences of a2 were 100% (417/417), 100% (472/472), 100% (762/762), and 99.7% (490/491) homology with those of Ilyonectria robusta (CBS 605.92) from Tilia petiolaris in Germany. Phylogenetic analysis using Maximum Likelihood and concatenated sequences (ITS+HIS+TEF+TUB2) with MEGA7 placed isolate a2 in I. robusta with 100% bootstrap support. The isolate was thus identified as I. robusta based on morphological and molecular characteristics (Cabral et al. 2012). Thirty healthy 6-month-old C. chinensis plants were used for the pathogenicity tests, and five plants were into each of 6 pots. 10ml of conidia suspension (1×106conidia/ml) of 10-day-old isolate a2 was gently applied to the soil in each of 6 pots. Sterile water (10ml) was applied to each of 6 pots as control. All 12 pots were placed in a greenhouse (25°C, 12h photoperiod). After 6 weeks inoculation, all inoculated plants showed twisting and wilting symptoms, and the roots showed light-brown to dark-brown lesions. No symptoms were observed on the controls. The pathogen was reisolated from all symptomatic roots and identified as I.robustaas previously described above. The test was repeated twice with similar results. Although this fungus was previously reported to cause root disease on many plants (Zheng et al. 2022; Qiao et al. 2019; Guggenheim et al. 2019), this is the first report of I. robusta causing root rot on C. chinensis in China, and will establish a foundation for controlling the disease.

14.
Clin Exp Med ; 23(6): 2181-2192, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36598672

RESUMEN

The prognosis of hepatitis B virus-associated acute-on-chronic liver failure (HBV-ACLF) is critical in clinical management. We aimed to assess the prognostic efficacy of superoxide dismutase 2 (SOD2) for 90-day mortality in HBV-ACLF patients. The expression patterns of SOD2 in peripheral blood mononuclear cells (PBMCs) were examined in a derivation set (n = 82) by quantitative real-time polymerase chain reaction (RT-qPCR). The results were further validated in a validation set (n = 35). The expression levels of SOD2 were significantly decreased in the derivation set compared to those with chronic hepatitis B (CHB) or the healthy controls (HCs) (P < 0.001). In HBV-ACLF patients, SOD2 levels were negatively correlated with serum total bilirubin (TBIL) (rs = - 0.43, P < 0.001) and model for end-stage liver disease (MELD) scores (rs = - 0.22, P = 0.047), but positively correlated with alkaline phosphatase (AKP) (rs = 0.23, P = 0.034). SOD2 was identified as an independent risk factor for 90-day mortality in HBV-ACLF patients (hazard ratio: 0.124, 95% confidence interval: 0.059-0.261, P < 0.001). SOD2 yielded a larger area under the receiver operating characteristic curve (AUROC) than the MELD score in predicting 90-day mortality (0.914 vs. 0.712, P < 0.001). Kaplan-Meier analysis revealed a favorable overall survival (OS) for the SOD2 high expression group compared with the SOD2 low expression group in both the derivation and validation sets (P < 0.001). SOD2 has promising potential as a predictor of 90-day mortality in patients with HBV-ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Enfermedad Hepática en Estado Terminal , Hepatitis B Crónica , Humanos , Insuficiencia Hepática Crónica Agudizada/diagnóstico , Enfermedad Hepática en Estado Terminal/diagnóstico , Enfermedad Hepática en Estado Terminal/complicaciones , Virus de la Hepatitis B , Hepatitis B Crónica/complicaciones , Leucocitos Mononucleares , Pronóstico , Estudios Retrospectivos , Curva ROC , Índice de Severidad de la Enfermedad
15.
Plant Physiol Biochem ; 194: 60-69, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36379178

RESUMEN

The light-induced transthylakoid membrane potential (ΔΨ) can not only drive the ATP synthesis through the ATP-synthase in chloroplasts but serve as an essential modifier in the acclimation of photosynthesis to fluctuating light conditions. It has been manifested that during photosynthesis, the light-induced ΔΨ is responsive to multiple factors among which the ion channels/transporters (e.g., V-K+, VCCN1, and KEA3) are key to adjust the ion distribution on the two sides of the thylakoid membrane and hence shape the kinetics of ΔΨ. However, an in-depth mechanistic understanding of ion fluxes on adjusting the transthylakoid electric potentials is still unclear. This lack of a mechanistic understanding is due to the experimental difficulty of closely observing ion fluxes in vivo and also hacking the evolution of parameters in a highly intertwined photosynthetic network. In this work, a computer model was applied to investigate the roles of ion fluxes on adjusting transthylakoid electric potentials upon a temporal cycle of a period of high illumination followed by a dark-adapted phase. The computing data revealed that, firstly, upon illumination, the dissipation of the steady-ΔΨ by ∼10 mV is contributed from the V-K+-driven K+ flux whilst ∼8 mV of the steady-ΔΨ is dissipated by the VCCN1-pumped Cl- flux, but there were no appreciable KEA3-evoked variations on ΔΨ; secondly, on transition from high light to darkness, V-K+ and KEA3 are serving as major contributors whereas VCCN1 taking a counterbalancing part in shaping a standard trace of ECS (electrochromic shift), which commonly shows a sharp fall to a minimum before returning to the baseline in darkness. Besides, the functional consequences on components of ΔΨ adjusted by every particular ion channel/transporter were also explored. By employing the model, we bring evidence that particular thylakoid-harbored proteins, namely V-K+, VCCN1, and KEA3, function by distinct mechanisms in the dynamic adjustment of electric potential, which might be mainly importnat under fluctuating light conditions.


Asunto(s)
Luz , Fotosíntesis , Tilacoides/metabolismo , Cloroplastos/metabolismo , Adenosina Trifosfato/metabolismo
16.
Front Public Health ; 10: 1025658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530657

RESUMEN

Aim: To explore the role of smell and taste changes in preventing and controlling the COVID-19 pandemic, we aimed to build a forecast model for trends in COVID-19 prediction based on Google Trends data for smell and taste loss. Methods: Data on confirmed COVID-19 cases from 6 January 2020 to 26 December 2021 were collected from the World Health Organization (WHO) website. The keywords "loss of smell" and "loss of taste" were used to search the Google Trends platform. We constructed a transfer function model for multivariate time-series analysis and to forecast confirmed cases. Results: From 6 January 2020 to 28 November 2021, a total of 99 weeks of data were analyzed. When the delay period was set from 1 to 3 weeks, the input sequence (Google Trends of loss of smell and taste data) and response sequence (number of new confirmed COVID-19 cases per week) were significantly correlated (P < 0.01). The transfer function model showed that worldwide and in India, the absolute error of the model in predicting the number of newly diagnosed COVID-19 cases in the following 3 weeks ranged from 0.08 to 3.10 (maximum value 100; the same below). In the United States, the absolute error of forecasts for the following 3 weeks ranged from 9.19 to 16.99, and the forecast effect was relatively accurate. For global data, the results showed that when the last point of the response sequence was at the midpoint of the uptrend or downtrend (25 July 2021; 21 November 2021; 23 May 2021; and 12 September 2021), the absolute error of the model forecast value for the following 4 weeks ranged from 0.15 to 5.77. When the last point of the response sequence was at the extreme point (2 May 2021; 29 August 2021; 20 June 2021; and 17 October 2021), the model could accurately forecast the trend in the number of confirmed cases after the extreme points. Our developed model could successfully predict the development trends of COVID-19. Conclusion: Google Trends for loss of smell and taste could be used to accurately forecast the development trend of COVID-19 cases 1-3 weeks in advance.


Asunto(s)
Ageusia , COVID-19 , Trastornos del Olfato , Estados Unidos , Humanos , Ageusia/epidemiología , COVID-19/epidemiología , Pandemias , Olfato , SARS-CoV-2 , Motor de Búsqueda/métodos
17.
Plant Dis ; 2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36336671

RESUMEN

Mahonia fortunei, belonging to the Berberidaceae family, is widely cultivated in fields, parks, courtyards, and roadsides for its excellent ornamental characteristics and medicinal values in southern China (Yu and Chung 2017). In May 2021, leaf spots were observed on nearly 60~80% of M. fortunei plants growing in Chongqing Normal University campus (29°36'42″N; 106°17'59″E) from Chongqing City, China. The typical symptoms on leaves were irregular spots with gray centers, brown edges, and chlorotic halos, about 1 to 7 mm in diameter, and eventually coalesced forming larger necrotic areas. Twenty symptomatic leaves were randomly sampled from five diseased plants. Tissues were cut from the lesion margins and surface sterilized in 75% ethanol for 1 min, rinsed thrice with sterile water, dried on sterilized paper, plated on potato dextrose agar (PDA) plates, and incubated at 25°C for 7 days in the dark. A total of 20 isolates were obtained from the infected leaves. Pure colonies of all fungal isolates had similar characteristics, and three isolates were randomly selected (SD11, SD18, SD19) for further study. Colonies of this fungus were olivaceous greenish to olivaceous black with a granular surface, and irregular light olive edges, finally turning black on PDA. Pycnidia were black, globose, granular, and in clusters. Conidia (n=30) were hyaline, aseptate, unicellular, obovoid to ellipsoid, narrow end with single apical appendage, and 7.5~11.2 × 4.5 ~6.5 µm. The DNA of three isolates were extracted and the internal transcribed spacer (ITS) region, actin (ACT), and translation elongation factor 1-α (TEF1) genes were amplified and sequenced using the primers ITS1/ITS4 (White et al. 1990), ACT512F/ACT783R, and ER728F/EF986R (Carbone and Kohn 1999), respectively. The sequences of three isolates were 100% identical, and one representative isolate SD18 were deposited in GenBank (ON231754, ITS; ON246259, ACT; and ON246258, TEF1). Sequence analysis revealed that the consensus sequences of ITS, ACT, and TEF1 of isolate SD18 was 99 to 100% identical to each sequence of an Indonesian strain (CBS 117118) of P. capitalensis from Musa acuminate (FJ538339 for ITS, FJ538455 for ACT, FJ538397 for TEF1). Phylogenetic analysis using Maximum Likelihood and concatenated sequences (ITS+ACT+TEF1) with MEGA7 placed isolate SD18 in P. capitalensis with 100% bootstrap support. Based on these morphological and molecular characteristics, the isolates were identified as P. capitalensis (Wikee et al. 2013). To fulfill Koch's postulates, 8 healthy potted plants were inoculated with 106 conidia/ml suspension of isolate SD18 by spraying the leaves, and another 8 plants were sprayed with sterile distilled water as control. All plants were covered with plastic bags for two days and then arranged in a greenhouse with 80% relative humidity at 25°C. The pathogenicity test was repeated thrice. After 18 days inoculation, the similar symptoms were observed on the inoculated plants, whereas control plants remained healthy. The pathogen was reisolated from symptomatic tissue and identified as P. capitalensis by the methods described above. P. capitalensis has been reported causing leaf spot on various host plants around the world (Wikee et al. 2013), recently found on tea plant, castor, and oil palm (Cheng et al. 2019; Tang et al. 2020; Nasehi et al. 2020). This is the first report of P. capitalensis causing leaf spot on M. fortune in China, and will establish a foundation for controlling the disease.

18.
Cancer Res ; 82(21): 3974-3986, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36069931

RESUMEN

Resistance to HER2-targeted therapy represents a significant challenge for the successful treatment of patients with breast cancer with HER2-positive tumors. Through a global mass spectrometry-based proteomics approach, we discovered that the expression of the N6-methyladenosine (m6A) demethylase ALKBH5 was significantly upregulated in HER2-targeted therapy-resistant breast cancer cells. Elevated expression of ALKBH5 was sufficient to confer resistance to HER2-targeted therapy, and specific knockdown of ALKBH5 rescued the efficacy of trastuzumab and lapatinib in resistant breast cancer cells. Mechanistically, ALKBH5 promoted m6A demethylation of GLUT4 mRNA and increased GLUT4 mRNA stability in a YTHDF2-dependent manner, resulting in enhanced glycolysis in resistant breast cancer cells. In breast cancer tissues obtained from patients with poor response to HER2-targeted therapy, increased expression of ALKBH5 or GLUT4 was observed and was significantly associated with poor prognosis in the patients. Moreover, suppression of GLUT4 via genetic knockdown or pharmacologic targeting with a specific inhibitor profoundly restored the response of resistant breast cancer cells to trastuzumab and lapatinib, both in vitro and in vivo. In conclusion, ALKBH5-mediated m6A demethylation of GLUT4 mRNA promotes resistance to HER2-targeted therapy, and targeting the ALKBH5/GLUT4 axis has therapeutic potential for treating patients with breast cancer refractory to HER2-targeted therapies. SIGNIFICANCE: GLUT4 upregulation by ALKBH5-mediated m6A demethylation induces glycolysis and resistance to HER2-targeted therapy and represents a potential therapeutic target for treating HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Neoplasias de la Mama/patología , Desmetilación , Glucólisis , Lapatinib/uso terapéutico , ARN Mensajero/genética , Trastuzumab/uso terapéutico
19.
Contrast Media Mol Imaging ; 2022: 8357617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159170

RESUMEN

The clinical effect of implementing health education in ministration elderly hypertensive sufferers is analyzed. Two hundred hypertensive sufferers admitted to our hospital from February 2020 to April 2021 are selected. The two sets of sufferers are randomly divided into the examination set and the control set using the random number table method, with 100 cases in each set. The control set is given routine ministration care, and the examination set is given routine ministration to implement health education; these indicators include: the blood pressure control compliance, Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), and the Chinese version of Perceived Stress Scale (CPSS) scores; the compliance rate of health knowledge score, serum Angiotensin II (Ang II), Endothelin-1 (ET-1) and Superoxide Dismutase (SOD) standards, medication compliance, prognosis quality of life, and cumulative occurrence of MACCE are compared. The experimental results show that the application of health education in the ministration process of elderly hypertensive sufferers can effectively enhance the blood pressure of the sufferers, reduce the negative emotions and psychological pressure of the sufferers, enhance the quality of life of the sufferers, and reduce the prognosis of recurrence and the occurrence of adverse cardiovascular events.


Asunto(s)
Ansiedad , Depresión , Anciano , Angiotensina II , Ansiedad/diagnóstico , Ansiedad/epidemiología , Ansiedad/psicología , Depresión/diagnóstico , Depresión/epidemiología , Depresión/psicología , Endotelina-1 , Educación en Salud , Humanos , Calidad de Vida , Superóxido Dismutasa
20.
Front Plant Sci ; 13: 945675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968094

RESUMEN

The transthylakoid membrane potential (ΔΨm) is essential because it can drive the ATP synthesis through the CF0-CF1 type of ATP-synthase in chloroplasts as an energetic equivalent similar to ΔpH. In addition, a high fraction of proton motive force (PMF) stored as the ΔΨm component is physiologically important in the acclimation of photosynthesis to environmental stresses. It has been shown that ΔΨm is the sum of the Donnan potential difference (ΔΨdn) and the diffusion potential difference (ΔΨd). Specifically, ΔΨdn, ΔΨd, and ΔΨm are strongly associated with the ionic activities near the membrane surface, particularly, the extent of ion binding to the charged/neutral sites adjacent to the membrane surface. However, an in-depth analysis of the effect of altered cationic binding to the membrane surface on adjusting the transthylakoid electric potentials (ΔΨdn, ΔΨd, and ΔΨm) is still missing. This lack of a mechanistic understanding is due to the experimental difficulty of closely observing cations binding to the membrane surface in vivo. In this work, a computer model was proposed to investigate the transthylakoid electric phenomena in the chloroplast focusing on the interaction between cations and the negative charges close to the membrane surface. By employing the model, we simulated the membrane potential and consequently, the measured ECS traces, proxing the ΔΨm, were well described by the computing results on continuous illumination followed by a dark-adapted period. Moreover, the computing data clarified the components of transthylakoid membrane potential, unraveled the functional consequences of altered cationic attachment to the membrane surface on adjusting the transthylakoid electric potential, and further revealed the key role played by Donnan potential in regulating the energization of the thylakoid membrane. The current model for calculating electric potentials can function as a preliminary network for the further development into a more detailed theoretical model by which multiple important variables involved in photosynthesis can be explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...